Find the surface area of the composite solid. Round your answer to the nearest hundredth.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the surface area of the composite solid. Round your answer to the nearest hundredth.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The total surface area of the composite solid, can be decomposed into three areas: 1 the circular base 2 the lateral surface area of the cylinder (a rectangle) & 3 the lateral area of the cone (a sector)
The area of a circle (or radius \(r\)) is : \[A_\text{circle} = \pi r^2\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The area of a rectangle (of width \(w\), height \(h\)) is: \[A_\text{rectangle} = w\times h\]
so i tryed it and got c is that right
i don't know,
that makes to of us
The area of the sector (of radius \(r\), and slope \(s\)) is: \[A_\text{sector} = \pi r s\]
add them all together, what do you get ? (before plugging in the numbers)
i put c and i only got 30 min :( and got 6 more questions
i dont know what the answer is, we have to work it out
\[SA_\text{total} = A_\text{circle}+A_\text{rectangle}+A_\text{sector}\\ \qquad\quad= \quad. . .\]
https://www.youtube.com/watch?v=Qmb9cnx__hA
never mind that one i guessed cuz ii need to do the rest befopre time runs out
NB: the width of the rectangle the circumference of a circle \[w =C = 2\pi r\]
\[SA_\text{total} = A_\text{circle}+A_\text{rectangle}+A_\text{sector}\\ \qquad\quad= \pi r^2+2\pi r h+\pi rs\\ \qquad\quad= \pi r(r+2h+s)\\ \qquad\quad= \quad. . .\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question