anonymous
  • anonymous
Challenge! Ready? Find the magnitude and direction of the vector. Round the length to the nearest tenth and the degree to the nearest unit. Diagram is not drawn to scale. http://assets.openstudy.com/updates/attachments/55b5b6b5e4b04559507b5a62-lollygirl217-1437972193870-as.jpg
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Hello again. Was this right? Find the magnitude and direction of the vector You could find the magnitude using pythagoras, or by using trig. The question asks for direction, which probably should be in the form NxxºE (North and so many degrees to the East). the magnitude is sin(A)= 6/M or M= 6/sin(A)= 6/sin(56.3)= 7.2 ft (If we use pythagoras: sqrt( 4^2 + 6^2) = sqrt(52)= 7.2 ft (Good!) answer: 7.2 ft in the direction N56.3ºE. They want the degree to the nearest unit, and the magnitude to the nearest tenth, so the real answer is 7.2 ft in the direction N56ºE.
ganeshie8
  • ganeshie8
Looks good!
anonymous
  • anonymous
Thank ya.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.