anonymous
  • anonymous
Help!! 1^2 + (1^2+2^2) + (1^2+2^2+3^2) + (1^2+2^2+3^2+4^2) + ......
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
In the given progression find |dw:1438007233401:dw|
anonymous
  • anonymous
??
anonymous
  • anonymous
got any idea?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmate
  • mathmate
Do you know how to do: \(\sum_{k=1}^n k, \sum_{k=1}^n k^2, and \sum_{k=1}^n k^3 \) ?
anonymous
  • anonymous
yeah
mathmate
  • mathmate
Ok, then the given series can be rewritten as: \(\sum_{i=1}^n \sum_{j=1}^i j^2\)
mathmate
  • mathmate
from which you can expand the second summation in terms of the sum of squares.
anonymous
  • anonymous
|dw:1438009474652:dw|
anonymous
  • anonymous
right?
mathmate
  • mathmate
... and in terms of i. It will be a cubic polynomial in terms of i. Then you can sum the first summation, to get the answer as a 4th degree polynomial.
anonymous
  • anonymous
Right thanks
mathmate
  • mathmate
If you want a check, post your answer! :)
anonymous
  • anonymous
|dw:1438010017231:dw|
mathmate
  • mathmate
Yep, that's what I got, and it's well factorized as well, good job! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.