A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
Help!!
1^2 + (1^2+2^2) + (1^2+2^2+3^2) + (1^2+2^2+3^2+4^2) + ......
anonymous
 one year ago
Help!! 1^2 + (1^2+2^2) + (1^2+2^2+3^2) + (1^2+2^2+3^2+4^2) + ......

This Question is Closed

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0In the given progression find dw:1438007233401:dw

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1Do you know how to do: \(\sum_{k=1}^n k, \sum_{k=1}^n k^2, and \sum_{k=1}^n k^3 \) ?

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1Ok, then the given series can be rewritten as: \(\sum_{i=1}^n \sum_{j=1}^i j^2\)

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1from which you can expand the second summation in terms of the sum of squares.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0dw:1438009474652:dw

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1... and in terms of i. It will be a cubic polynomial in terms of i. Then you can sum the first summation, to get the answer as a 4th degree polynomial.

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1If you want a check, post your answer! :)

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0dw:1438010017231:dw

mathmate
 one year ago
Best ResponseYou've already chosen the best response.1Yep, that's what I got, and it's well factorized as well, good job! :)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.