AakashSudhakar
  • AakashSudhakar
[Calculus 3] Can someone help me with the following surface integral? Thanks!
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

AakashSudhakar
  • AakashSudhakar
Evaluate the surface integral \[\int\limits_{ }^{ }\int\limits_{S}^{}(x^2+y^2+5z^2)dS\] where S is the part of the cone \[z=6-\sqrt{x^2+y^2}\] above the plane \[z=0\]
IrishBoy123
  • IrishBoy123
use cylindrical so \(z = 6 - r\) or: \(z +r-6=0\) and area element \(\large dS = \frac{r dr d \theta}{cos \alpha}\) where \( \large cos \alpha = \frac{\vec n . \hat z}{|\vec n | \ | \hat z|} \) [ie angle between normal to cone and the z axis] normal \( \vec n = \nabla [z+r-6] = <1,0,1>\), \(cos \alpha = \frac{1}{\sqrt{2}}\) [meets reality test, cone at \(45^o\) to z axis] the integrand: \(x^2+y^2+5z^2 = r^2 + 5(6-r)^2 = r^2 + 5(36 - 12r + r^2)) \\ = 180 - 60r + 6r^2\) \(\large = \sqrt{2} \int_{\theta=0}^{2\pi} \int_{r=0}^{6} (180 - 60r + 6r^2)r \ dr \ d \theta\)
AakashSudhakar
  • AakashSudhakar
Thank you, I could not for the life of me figure this out, particularly regarding solving for the normal vector and using the dot product formula for cosine. That didn't even occur to me. Thanks for all the help!

Looking for something else?

Not the answer you are looking for? Search for more explanations.