anonymous
  • anonymous
You are starting a Shaved Ice business and need to decide on a cup.  Your choices are between a cone and a cylindrical shaped cup.  The cone shaped cup has a diameter of 3.25 inches and is 3.75 inches tall.  The cylindrical cup has a diameter of 4 inches and height of 4.75 inches.  The spherical scoop you have chosen has a diameter of 2.75 inches.  Which cup should you choose if you want two scoops of ice to best fit in the cup?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
step #1 we have to compute the volume V of the spherical scoop: \[\begin{gathered} V = \frac{{4 \times 3.14}}{3}{r^3} = \frac{{12.56}}{3} \times {1.375^3} = \hfill \\ \hfill \\ = \frac{{12.56}}{3} \times {1.375^3} = ...? \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
since if the diameter is 2.75 inches, then the radius is: 2.75/2=1.375 inches

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay
anonymous
  • anonymous
I got 2.374625
Michele_Laino
  • Michele_Laino
I got this: \[\Large \begin{gathered} V = \frac{{4 \times 3.14}}{3}{r^3} = \frac{{12.56}}{3} \times {1.375^3} = \hfill \\ \hfill \\ = \frac{{12.56}}{3} \times {1.375^3} = \frac{{12.56}}{3} \times 2.600 = 10.884inche{s^3} \hfill \\ \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
\[\large \begin{gathered} V = \frac{{4 \times 3.14}}{3}{r^3} = \frac{{12.56}}{3} \times {1.375^3} = \hfill \\ \hfill \\ = \frac{{12.56}}{3} \times {1.375^3} = \frac{{12.56}}{3} \times 2.600 = 10.884inche{s^3} \hfill \\ \hfill \\ \end{gathered} \]
anonymous
  • anonymous
now I have to do the same for the cylindrical cup
Michele_Laino
  • Michele_Laino
yes!
Michele_Laino
  • Michele_Laino
the volume V of the cylindrical cup is: \[\large \begin{gathered} V = 3.14 \times R \times R \times H = \hfill \\ \hfill \\ = 3.14 \times 2 \times 2 \times 4.75 = ...inche{s^3} \hfill \\ \end{gathered} \] since the radius is 4/2=2 inches
Michele_Laino
  • Michele_Laino
I have used this approximation: pi = 3.14
Michele_Laino
  • Michele_Laino
what do you get?
anonymous
  • anonymous
59.66
Michele_Laino
  • Michele_Laino
correct!
anonymous
  • anonymous
sorry if Im going slow on the questions I writing the answers and work down
Michele_Laino
  • Michele_Laino
ok! no worries! :)
anonymous
  • anonymous
I have to calculate the scoops
Michele_Laino
  • Michele_Laino
we can see that the cylindrical cup is too large since two scoops of ice occupy 10.884*2= 21.768 inches^3
anonymous
  • anonymous
okay
anonymous
  • anonymous
thank yu for helping me :D
Michele_Laino
  • Michele_Laino
:)
Michele_Laino
  • Michele_Laino
now we have to compute the volume of the cone shaped cup
anonymous
  • anonymous
okay
anonymous
  • anonymous
would is be 59.6 and 10.88
Michele_Laino
  • Michele_Laino
here is that volume: \[\begin{gathered} V = \frac{1}{3}3.14 \times R \times R \times H = \frac{{3.14 \times 1.625 \times 1.625 \times 3.75}}{3} = \hfill \\ \hfill \\ = \frac{{3.14 \times 1.625 \times 1.625 \times 3.75}}{3} = \frac{{3.14 \times 2.64 \times 3.75}}{3} = ...inche{s^3} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
since the radius is: 3.25/2= 1.625 inches
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
what do you get?
anonymous
  • anonymous
1.625
Michele_Laino
  • Michele_Laino
that is the radius, whereas the volume is: \[\begin{gathered} V = \frac{1}{3}3.14 \times R \times R \times H = \frac{{3.14 \times 1.625 \times 1.625 \times 3.75}}{3} = \hfill \\ \hfill \\ = \frac{{3.14 \times 1.625 \times 1.625 \times 3.75}}{3} = \frac{{3.14 \times 2.64 \times 3.75}}{3} = \hfill \\ \hfill \\ = 10.364inche{s^3} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
so the cone shaped cup is too small, since it can not contain 2 scoops of ice, therefore we have to choose the cylindrical cup

Looking for something else?

Not the answer you are looking for? Search for more explanations.