anonymous
  • anonymous
What is the equation of the following graph in vertex form? parabolic function going down from the left through the point zero comma five and turning at the point two comma one and continuing up towards infinity Courtesy of Texas Instruments
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Can you show the graph
anonymous
  • anonymous
Just save image as
anonymous
  • anonymous
and atach file here

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@vera_ewing
anonymous
  • anonymous
hhttps://www.google.com/search?tbs=sbi:AMhZZivJ_1rcqJoCVc_15HDoyiiStTQqwnTG_1VdOivSerrQ7f8N9LfLNGD2338OYXPJJHZ-BksNaSRRvz8x8TAEZr-4QHtXFOCpptz9hWuRKYJjhNVh395zUnX5aJ9a9RMGDgPqbNumH1coFQk9JjuKwGKikLbbO5lxvJLe1FiiTawPPWMMmuKh563BRFE5_1sj6iPrdDFJ8HRIHSZ4zPxbt9Lz5eDvX1QeVV5QyimR7YYP9LwPUzVuc11IJyEhmmplJkbLpsiaW_1eEK_1SbuhyWf6N9u8WySQbbXcPdynP840P5-IrDLYRNlnTd9Up0wPx9iaoRJ72TmW8T2mIdQv9TqyMfYfTw-VDCosJZjgO6RWOVuLJWVWxvgTUuUfRngU9LXAnWkh66MDyXrLDn2LksipWZcmkRYXKPO_1oxOsika8wkfTh_1eLZQY125hWPBwDWQfSDDETuWG9j7uhIo6-8oAQHMicAsSZzNbnvzv0xbufTylPaGSmxsiZ8nkQXXqcI8i3E7dexOCNhvqw6hKBEvhhkQ6i-FGePK0CxPF6K7VyfTl7fKGv9Qy57PdJ6oW-QDOH6ZAz5svgIxT8s91WYg2NLgTWzbQ3r-D-JtKUxWeURZ8RwVXrBH3b6oXx5S9L6Yr209kDpO6sVGyFGK1oxA5ksJtqUFFLGt1a87ZRYBzBI8xoN7bLi2rO69mUduTKxzD9kat3eb45xzkMXzimp-3MvxpIcaW4mfEt_1LTlClm10ioGZ4wQjHMgInf_1hdvFWCfbfPlCndBZR8BDmQt_1lspAtCdQudc-WsxNMLKD4PzKTX_1f6nQoLwY25THWevEKFpEhfp-PvG2Ua0lfvOVCazvcVCt_1oDqI_13aqL_1x6X2tFATLMndEDPGAQZURXQknOsW8NvKPwE-hGdpqUtJfWNn7oXV3q_1vg_1H1Ew

Looking for something else?

Not the answer you are looking for? Search for more explanations.