anonymous
  • anonymous
how to factor x^2-x-20
Algebra
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

mathstudent55
  • mathstudent55
Since the coefficient of the x^2 term is 1, you need the following type of factoring: x^2 + ax + b 1. Find two numbers that multiply to b and add to a. Let's call these numbers p and q. 2. The factoring is simply (x + p)(x + q) In your case, if you compare x^2 - x - 20 to x^2 + ax + b, you have a = -1 and b = -20. You need two numbers that multiply to -20 and add to -1. What are two numbers that multiply to -20 and add to -1?
anonymous
  • anonymous
\[x^2-x-20\\x^2-4x+5x-20\\x(x-4)+5(x-4)\\(x-4)[x+5]\\\]
mathstudent55
  • mathstudent55
@eninone You wrote: \(x^2-x-20\) \(x^2-4x+5x-20\) \(x(x-4)+5(x-4)\) \((x-4)[x+5]\) Look at your second line: \(x^2-4x+5x-20\) If you add like terms, you get: \(x^2+x-20\) That is not the original polynomial. You need -5x and + 4x, not -4x and + 5x.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous

Looking for something else?

Not the answer you are looking for? Search for more explanations.