anonymous
  • anonymous
need help please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Surana
  • Surana
On what?
anonymous
  • anonymous
|dw:1438044813980:dw| simplest radical form
Surana
  • Surana
I don't think I can help you with this, unfortunately. Maybe you could ask Misty1212.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
use this property of exponents \[\frac{x^m}{x^n} = x^{m-n}\]
dumbcow
  • dumbcow
this means subtract the exponents ... ---> 5/6 - 1/6 = ?
anonymous
  • anonymous
4/6
dumbcow
  • dumbcow
right now reduce fraction and write answer in radical form
anonymous
  • anonymous
x ^ 2/3
anonymous
  • anonymous
\[{x}^{2/3}\]
dumbcow
  • dumbcow
yes \[x^{2/3} = \sqrt[3]{x^2}\]
anonymous
  • anonymous
i kinda guess but can you show me the steps? please
dumbcow
  • dumbcow
step 1: subtract exponent step 2: reduce fraction step 3: write in radical form
anonymous
  • anonymous
oh... umm okhay thannnnk youuu!
dumbcow
  • dumbcow
yw
anonymous
  • anonymous
dumbcow
anonymous
  • anonymous
|dw:1438046017574:dw|
anonymous
  • anonymous
@dumbcow

Looking for something else?

Not the answer you are looking for? Search for more explanations.