challenge! ready?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

challenge! ready?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

solve without using complement, that is \(\sf P(x) = 1 - P(x') \)
1/5?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Probability of at least 1 girl \[P(X \ge 1)=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)\]
I don't do stats problems.
probability of 1 girl + probability of 2 girls + probability of 3 girls + probability of 4 girls + probability of 5 girls
continue
can i do it as well
are you using \(\large \cup_{x=1} ^{n} X_i = P(x_1 \cup x_2 \cup x_3\cup x_4 \cup x_5) \)
\[P(X \ge 1)=\frac{1}{32}+\frac{1}{16}+\frac{1}{8}+\frac{1}{4}+\frac{1}{2}=\frac{1+2+4+8+16}{32}=\frac{31}{32}\] another method \[P(X=0)=\frac{1}{32}\]\[P(X \ge 1)=1-P(X=0)=1-\frac{1}{32}=\frac{32-1}{32}=\frac{31}{32}\]
haha wow
i said without using complement
I've done both with and without compliment, the compliment method is much faster anyway
another equivalent reasoning, can be this: the even space contains 32 possible events, nevertheless only one event, of them, is like this: BBBBB, where B stands for boy, so the total number of favorable events is 31
I think you can also do this using binomial distribution where n=5 p=q=0.5
why do u people make ur life so hard
oops..event space
|dw:1438078796913:dw|
|dw:1438079317682:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question