anonymous
  • anonymous
Find an exact value. cos 165° quantity square root of six minus square root of two divided by four. quantity square root of two minus square root of six divided by four. quantity square root of two plus square root of six divided by four. quantity negative square root of six minus square root of two divided by four.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
\[\cos 165^{\circ} = -\cos (180^{\circ} - 165^{\circ})=-\cos(15^{\circ})\]\[= - \cos(45^{\circ} - 30^{\circ})\]
anonymous
  • anonymous
I thought you would do cos(165)=cos(120+45) for that part?
ParthKohli
  • ParthKohli
Anything that works...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Okay can you help me do the problem that way?
ParthKohli
  • ParthKohli
\[\cos(120 + 45) = \cos 120 \cos 45 - \sin 120 \sin 45\]Do you know the values of the four trig-ratios?
anonymous
  • anonymous
Would I use the unit circle for that?
phi
  • phi
yes, you can use the unit circle (at least to figure out the correct sign) for example, cos 120 on the unit circle we have |dw:1438101174265:dw|
phi
  • phi
to find the cos 120, we first find the "principal angle" which is always the smallest angle measured from the x-axis. In this case it is the marked angle in the figure, and it is 180-120= 60 degrees thus we want to find the cos 60. This is one that should be memorized. cos 60= 1/2 Next, we need to figure out the sign. As shown in the figure, the "x value" is negative we know cos = x/r (r is 1 for the unit circle), so if x is negative, then the cosine value will be negative. All of that means cos 120 = - 1/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.