anonymous
  • anonymous
Find the interval of convergence n!x^n
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
here we have a power series, so we have to apply this formula: \[R = \frac{1}{L}\] where R is the converging radius and L is: \[L = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\left| {{a_n}} \right|}} = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{n!}} = 1\] so, we have: \[R = \frac{1}{L} = \frac{1}{1} = 1\]
anonymous
  • anonymous
May I get a low level detail of the solution?
Michele_Laino
  • Michele_Laino
ok!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
your power series doesn't converge at x=1 or x=-1 so it converges into the interval: (-1, 1)
anonymous
  • anonymous
Thanks!
Michele_Laino
  • Michele_Laino
of course at x=0, your series converges, as you can easily check, by substitution
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
Was it \[\sum_{n=0}^{\infty} n! x^n\] if so the radius of convergence then would be R = 0, where the interval of convergence is {0}. We could use the ratio test, we must note that \[x \neq 0\] so let \[a_n = n!x^n\]\[\lim_{n \rightarrow \infty} \left| \frac{ a_n+1 }{ a_n } \right| = \lim_{n \rightarrow \infty} \left| \frac{ (n+1)!x^{n+1} }{ n!x^n } \right| = \lim_{n \rightarrow \infty} (n+1)|x| = \infty \] xo you can even see the series diverges when x cannot = -, so the series converges only when x = 0.
Michele_Laino
  • Michele_Laino
I'm very sorry @Yaros, I have made an error, here is the right computation: \[\Large \begin{gathered} L = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\left| {{a_n}} \right|}} = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{n!}} = + \infty \hfill \\ \hfill \\ R = 0 \hfill \\ \end{gathered} \] Please look at the correct answer of @iambatman Thanks @iambatman for your reply!! :)
anonymous
  • anonymous
the series has zero radius of convergence because eventually \(n!\) grows much faster than \(x^{-n}\) can shrink
anonymous
  • anonymous
essentially, convergence of a series \(\sum a_n x^n\) depends on \(|a_n|
anonymous
  • anonymous
we try to find the maximum such \(r\), so we want to match the growth of \(a_n\): $$a_n\in\Theta(r^{-n})$$ if we know that \(a_n\sim r^{-n}\) then it follows we want $$\lim\left|\frac{a_n}{r^{-n}}\right|\le1\\\lim \left|a_n r^n\right|=\lim(\sqrt[n]{a_n} r)^n=(\lim\sqrt[n]{a_n} r)^n\le1$$ so $$\lim\sqrt[n]{a_n} r\le 1\\\lim\sqrt[n]{a_n} \le \frac1r$$

Looking for something else?

Not the answer you are looking for? Search for more explanations.