Find the interval of convergence n!x^n

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the interval of convergence n!x^n

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

here we have a power series, so we have to apply this formula: \[R = \frac{1}{L}\] where R is the converging radius and L is: \[L = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\left| {{a_n}} \right|}} = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{n!}} = 1\] so, we have: \[R = \frac{1}{L} = \frac{1}{1} = 1\]
May I get a low level detail of the solution?
ok!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

your power series doesn't converge at x=1 or x=-1 so it converges into the interval: (-1, 1)
Thanks!
of course at x=0, your series converges, as you can easily check, by substitution
:)
Was it \[\sum_{n=0}^{\infty} n! x^n\] if so the radius of convergence then would be R = 0, where the interval of convergence is {0}. We could use the ratio test, we must note that \[x \neq 0\] so let \[a_n = n!x^n\]\[\lim_{n \rightarrow \infty} \left| \frac{ a_n+1 }{ a_n } \right| = \lim_{n \rightarrow \infty} \left| \frac{ (n+1)!x^{n+1} }{ n!x^n } \right| = \lim_{n \rightarrow \infty} (n+1)|x| = \infty \] xo you can even see the series diverges when x cannot = -, so the series converges only when x = 0.
I'm very sorry @Yaros, I have made an error, here is the right computation: \[\Large \begin{gathered} L = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\left| {{a_n}} \right|}} = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{n!}} = + \infty \hfill \\ \hfill \\ R = 0 \hfill \\ \end{gathered} \] Please look at the correct answer of @iambatman Thanks @iambatman for your reply!! :)
the series has zero radius of convergence because eventually \(n!\) grows much faster than \(x^{-n}\) can shrink
essentially, convergence of a series \(\sum a_n x^n\) depends on \(|a_n|
we try to find the maximum such \(r\), so we want to match the growth of \(a_n\): $$a_n\in\Theta(r^{-n})$$ if we know that \(a_n\sim r^{-n}\) then it follows we want $$\lim\left|\frac{a_n}{r^{-n}}\right|\le1\\\lim \left|a_n r^n\right|=\lim(\sqrt[n]{a_n} r)^n=(\lim\sqrt[n]{a_n} r)^n\le1$$ so $$\lim\sqrt[n]{a_n} r\le 1\\\lim\sqrt[n]{a_n} \le \frac1r$$

Not the answer you are looking for?

Search for more explanations.

Ask your own question