anonymous
  • anonymous
Find the interval of convergence of the power series (3^n*x^n)/(n*4^n) From n=1 to infinity
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
we can rewrite your series, as follows: \[\sum {{a_n}{x^n}} \] where: \[{a_n} = \frac{1}{n}{\left( {\frac{3}{4}} \right)^n}\]
Michele_Laino
  • Michele_Laino
now, I apply this formula: \[\begin{gathered} R = \frac{1}{L} \hfill \\ \hfill \\ L = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\left| {{a_n}} \right|}} = \mathop {\max \lim }\limits_{n \to \infty } \sqrt[n]{{\frac{1}{n}{{\left( {\frac{3}{4}} \right)}^n}}} = \frac{3}{4} \hfill \\ \end{gathered} \] so, we have: \[R = \frac{4}{3}\]
Michele_Laino
  • Michele_Laino
furthermore, your series converges at x=0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
and for x=4/3, your series becomes the geometrical series: \[\sum {\frac{1}{n}} \] which doesn't converges. So your series converges in: \[\left( { - \frac{4}{3},\frac{4}{3}} \right)\]
anonymous
  • anonymous
$$\sum_{n=1}^\infty \frac1n\left(\frac34\right)^n x^n=\sum_{n=0}^\infty \frac1{n+1}\left(\frac34\right)^{n+1}x^{n+1}=\sum_{n=0}^\infty\left(\frac34\right)^{n+1}\int x^n\, dx$$ so $$\int\left(\sum_{n=0}^\infty\left(\frac34\right)^{n+1}x^n\right)dx=\int\frac{3/4}{1-x\cdot 3/4}\, dx=-\log(1-x\cdot3/4)$$
anonymous
  • anonymous
we didn't actually need to do the integral or any of that, but the point is that if \(f\) is analytic at \(x_0\) then its derivative \(f'\) is also analytic at \(x_0\) with the same radius of convergence; since our series is the derivative of a geometric one, and the geometric series has a radius of convergence \(|x|<4/3\), our series also has the same radius of convergence

Looking for something else?

Not the answer you are looking for? Search for more explanations.