anonymous
  • anonymous
simplify 5 square root of 7 + 12 square root of 6 - 10 square root of 7 - 5 square root of 6.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i need help please
Michele_Laino
  • Michele_Laino
hint: we can factor out square root of 7 between the first and the third term, furthermore, we can factor out square root of 6 between the second and fourth term, so we can write the subsequent step: \[\Large \begin{gathered} 5\sqrt 7 + 12\sqrt 6 - 10\sqrt 7 - 5\sqrt 6 = \hfill \\ \hfill \\ = \sqrt 7 \left( {5 - 10} \right) + \sqrt 6 \left( {12 - 5} \right) = ... \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
please complete

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
honestly i dont know mate im really confused sorry... @Michele_Laino
Michele_Laino
  • Michele_Laino
following the rules of algebra of radicals, you can only sum similar radicals, namely radicals which have the same square roots as in your case
Michele_Laino
  • Michele_Laino
now, \[5\sqrt 7 ,\; - 10\sqrt 7 \] are similar since they both have square root of 7, right?
anonymous
  • anonymous
i was trying to work it out and the answer i got was 5 square root of 7 - 7 quare root of 6
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
I got this since 5-10= -5, we have: \[\sqrt 7 \left( {5 - 10} \right) = - 5\sqrt 7 \]
Michele_Laino
  • Michele_Laino
furthermore 12-5=7, so we can write: \[\sqrt 6 \left( {12 - 5} \right)\]
Michele_Laino
  • Michele_Laino
oops.. \[\sqrt 6 \left( {12 - 5} \right) = 7\sqrt 6 \]
anonymous
  • anonymous
and that will be 7 square root of 6 - 5 square root of 7 @Michele_Laino
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
thank you so much can you help me with one more? @Michele_Laino
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
simplify square root of 5 (10-4 square root of 2) @Michele_Laino
Michele_Laino
  • Michele_Laino
we have to apply the distributive property of multiplication over addition, so we can write this: \[\Large \sqrt 5 \left( {10 - 4\sqrt 2 } \right) = 10\sqrt 5 - 4\sqrt 5 \sqrt 2 \]
Michele_Laino
  • Michele_Laino
am I right?
anonymous
  • anonymous
@Michele_Laino is that the answer to the question?
Michele_Laino
  • Michele_Laino
no, we have to write another step
anonymous
  • anonymous
ohhhhhh okay well as i simplify it i got 5 square root of 2 - 4 square root of 10 @Michele_Laino
Michele_Laino
  • Michele_Laino
more precisely we can write this: \[\sqrt 5 \sqrt 2 = \sqrt {5 \times 2} = \sqrt {10} \]
anonymous
  • anonymous
yea thats what i got @Michele_Laino
Michele_Laino
  • Michele_Laino
so we get: \[\sqrt 5 \left( {10 - 4\sqrt 2 } \right) = 10\sqrt 5 - 4\sqrt {10} \]
Michele_Laino
  • Michele_Laino
furthermore we can note that: \[10 = \sqrt {10} \sqrt {10} \]
Michele_Laino
  • Michele_Laino
so we can write: \[\sqrt 5 \left( {10 - 4\sqrt 2 } \right) = 10\sqrt 5 - 4\sqrt {10} = \sqrt {10} \sqrt {10} \sqrt 5 - 4\sqrt {10} \]
Michele_Laino
  • Michele_Laino
finally, I factor out sqrt(10) and I get: \[\begin{gathered} \sqrt 5 \left( {10 - 4\sqrt 2 } \right) = 10\sqrt 5 - 4\sqrt {10} = \sqrt {10} \sqrt {10} \sqrt 5 - 4\sqrt {10} \hfill \\ = \sqrt {10} \left( {\sqrt {10} \sqrt 5 - 4} \right) \hfill \\ \end{gathered} \]
anonymous
  • anonymous
its not too difficult just follow what the question is trying to tell you.
Michele_Laino
  • Michele_Laino
recalling taht: \[\sqrt {10} \sqrt 5 = \sqrt {10 \times 5} = \sqrt {50} \] we have: \[\begin{gathered} \sqrt 5 \left( {10 - 4\sqrt 2 } \right) = 10\sqrt 5 - 4\sqrt {10} = \sqrt {10} \sqrt {10} \sqrt 5 - 4\sqrt {10} \hfill \\ \hfill \\ = \sqrt {10} \left( {\sqrt {10} \sqrt 5 - 4} \right) = \sqrt {10} \left( {\sqrt {50} - 4} \right) \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
there is another way to simplify your radical
Michele_Laino
  • Michele_Laino
I start from the initial expression: \[\Large \sqrt 5 \left( {10 - 4\sqrt 2 } \right)\]
Michele_Laino
  • Michele_Laino
and I factor out a 2 inside the parentheses: \[\Large 10 - 4\sqrt 2 = 2\left( {5 - 2\sqrt 2 } \right)\]
Michele_Laino
  • Michele_Laino
so I can write: \[\Large \sqrt 5 \left( {10 - 4\sqrt 2 } \right) = \sqrt 5 \cdot 2\left( {5 - 2\sqrt 2 } \right)\]
Michele_Laino
  • Michele_Laino
and we have finished
Michele_Laino
  • Michele_Laino
now you can choose the method which do you prefer

Looking for something else?

Not the answer you are looking for? Search for more explanations.