Check my work if I'm correct. Find the exact value of sin(-11pi/12).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Check my work if I'm correct. Find the exact value of sin(-11pi/12).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

So I changed it from radians to degrees to make it easier.
sin(-11(3.1415926535)/12)
I'm not allowed to use the calculator. :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

= sin(0.26)
math I just remember first digits of pi so
You would just simplify 3.141592/12, which is around 0.26
then find the sin of 0.26
Should I use a reference angle to find -165?
So it'll be 15.
|dw:1438110805222:dw|
\[= -(\sin60\cos45-\cos60\sin45)\]
i would change negative angle to positive and then use one of de formula
i like positive stuff :D
|dw:1438110888230:dw|
|dw:1438110954725:dw|
I don't know if I did it right, so what do you guys think?
gimme a sec
All right. :)
okay so i add 360 int -165 360 -165 =195 i used sin(a+b) formula \[\huge\rm sin(a+b) =\sin A \times \cos B + \cos A \times \sin B\] \[\sin(45+150) =\sin 45 \cos 150 + \cos 45 \times \sin 150\] \[\sin(45+150) =\frac{ \sqrt{2} }{ 2} \times \frac{ -\sqrt{3} }{ 2 }+\frac{ \sqrt{2} }{ 2 }\times \frac{ 1 }{ 2 }\] and got \[\frac{ -\sqrt{6} + \sqrt{2 }}{ 4}\] so your answer is correct :D
Thank you! :)
gO_Od job! i almost forgot these stuff ;D
the cool thing about these is your start doesn't have to match someone elses start that like I would have done it this way: \[\sin(\frac{-11\pi}{12}) \\ \text{ sine function is odd } \\ -\sin(\frac{11\pi}{12}) \\ -\sin(165^o) \\ -\sin(120^o+45^o) \\ -[\sin(120^o)\cos(45^o)+\sin(45^o) \cos(120^o)] \\ -[\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{-1}{2}] \\ -[\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}] \\ -[\frac{\sqrt{6}-\sqrt{2}}{4}] \\ \text{ distribute outside negative } \\ \frac{-\sqrt{6}--\sqrt{2}}{4} \\ \frac{-\sqrt{6}+\sqrt{2}}{4}\]
yeah but i wasn't sure that we can take out negative sign \[\sin(\frac{ -11\pi }{ 2 }) --> -\sin(\frac{ 11\pi }{ 2 })\]
ik sin(-x)=-sin(x) hmm so that's possible
right and if we had cos(-x) then this is just cos(x) since cos is even
that is for example \[\cos(\frac{-11\pi}{12})=\cos(\frac{11\pi}{12})\]
true :=)

Not the answer you are looking for?

Search for more explanations.

Ask your own question