anonymous
  • anonymous
Check my work if I'm correct. Find the exact value of sin(-11pi/12).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
So I changed it from radians to degrees to make it easier.
hybrik
  • hybrik
sin(-11(3.1415926535)/12)
anonymous
  • anonymous
I'm not allowed to use the calculator. :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hybrik
  • hybrik
= sin(0.26)
hybrik
  • hybrik
math I just remember first digits of pi so
hybrik
  • hybrik
You would just simplify 3.141592/12, which is around 0.26
hybrik
  • hybrik
then find the sin of 0.26
anonymous
  • anonymous
Should I use a reference angle to find -165?
anonymous
  • anonymous
So it'll be 15.
anonymous
  • anonymous
|dw:1438110805222:dw|
anonymous
  • anonymous
\[= -(\sin60\cos45-\cos60\sin45)\]
Nnesha
  • Nnesha
i would change negative angle to positive and then use one of de formula
Nnesha
  • Nnesha
i like positive stuff :D
anonymous
  • anonymous
|dw:1438110888230:dw|
anonymous
  • anonymous
|dw:1438110954725:dw|
anonymous
  • anonymous
I don't know if I did it right, so what do you guys think?
Nnesha
  • Nnesha
gimme a sec
anonymous
  • anonymous
All right. :)
Nnesha
  • Nnesha
okay so i add 360 int -165 360 -165 =195 i used sin(a+b) formula \[\huge\rm sin(a+b) =\sin A \times \cos B + \cos A \times \sin B\] \[\sin(45+150) =\sin 45 \cos 150 + \cos 45 \times \sin 150\] \[\sin(45+150) =\frac{ \sqrt{2} }{ 2} \times \frac{ -\sqrt{3} }{ 2 }+\frac{ \sqrt{2} }{ 2 }\times \frac{ 1 }{ 2 }\] and got \[\frac{ -\sqrt{6} + \sqrt{2 }}{ 4}\] so your answer is correct :D
anonymous
  • anonymous
Thank you! :)
Nnesha
  • Nnesha
gO_Od job! i almost forgot these stuff ;D
freckles
  • freckles
the cool thing about these is your start doesn't have to match someone elses start that like I would have done it this way: \[\sin(\frac{-11\pi}{12}) \\ \text{ sine function is odd } \\ -\sin(\frac{11\pi}{12}) \\ -\sin(165^o) \\ -\sin(120^o+45^o) \\ -[\sin(120^o)\cos(45^o)+\sin(45^o) \cos(120^o)] \\ -[\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{-1}{2}] \\ -[\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}] \\ -[\frac{\sqrt{6}-\sqrt{2}}{4}] \\ \text{ distribute outside negative } \\ \frac{-\sqrt{6}--\sqrt{2}}{4} \\ \frac{-\sqrt{6}+\sqrt{2}}{4}\]
Nnesha
  • Nnesha
yeah but i wasn't sure that we can take out negative sign \[\sin(\frac{ -11\pi }{ 2 }) --> -\sin(\frac{ 11\pi }{ 2 })\]
Nnesha
  • Nnesha
ik sin(-x)=-sin(x) hmm so that's possible
freckles
  • freckles
right and if we had cos(-x) then this is just cos(x) since cos is even
freckles
  • freckles
that is for example \[\cos(\frac{-11\pi}{12})=\cos(\frac{11\pi}{12})\]
Nnesha
  • Nnesha
true :=)

Looking for something else?

Not the answer you are looking for? Search for more explanations.