OregonDuck
  • OregonDuck
FAN AND MEDAL Part C: If the two middle terms were switched so that the expression became 3x3y - 9x2y + 12xy - 36y, would the factored expression no longer be equivalent to your answer in part B? Explain your reasoning. (3 points)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
OregonDuck
  • OregonDuck
@Nnesha
OregonDuck
  • OregonDuck
Part A: 3x^3y+12xy−9x^2y−36y GCF of numbers = 3 GCF of y terms = y 3x^3y+12xy−9x^2y−36y after factoring the 3 : 3(x^3y+4xy−3x^2y−12y) after factoring the y : 3y(x^3+4x−3x^2−12)
OregonDuck
  • OregonDuck
Part B: 3y(x^3+4x−3x^2−12) Factoring out GCF from first two terms gives : 3y(x(x^2+4)−3x^2−12) 3y(x^3+4x−3x^2−12) Factoring out GCF from first two terms gives : 3y(x(x^2+4)−3x^2−12) Factoring the GCF from last two terms gives : 3y(x(x^2+4)−3(x^2+4)) factoring out the (x^2+4) from the terms inside parenthesis gives : 3y(x^2+4)(x−3)

Looking for something else?

Not the answer you are looking for? Search for more explanations.