anonymous
  • anonymous
SubsetGCD is described by the following: instance: A set of positive integers S and an integer k question: does there exist a subset S′ of S of size k such that GCD(S′)=GCD(S) Prove that SubsetGCD is np complete. The hint for the problem is to reduce VertexCover to SubsetGCD
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I know what I'm supposed to do. Given an instance of VertexCover convert it into the form of SubsetGCD such that there exists a vertex cover of size k if and only if there exists a subset S′ of size k such that GCD(S′)=GCD(S)

Looking for something else?

Not the answer you are looking for? Search for more explanations.