anonymous
  • anonymous
How could you use Descartes' rule and the Fundamental Theorem of Algebra to predict the number of complex roots to a polynomial as well as find the number of possible positive and negative real roots to a polynomial? Your response must include: A summary of Descartes' rule and the Fundamental Theorem of Algebra. This must be in your own words. Two examples of the process Provide two polynomials and predict the number of complex roots for each. You must explain how you found the number of complex roots for each.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I read and looked up a lot on this question, but I am still having problems putting it into words
anonymous
  • anonymous
@Hero
anonymous
  • anonymous
You can use Descarte's Rule of Signs to find the maximum number of positive and negative real zeros to a polynomial. The Fundamental Theorem of Algebra can be use to find the maximum number of total zeros. Then subtract the number of real zeros from the total zeros to obtain the complex zeros.

Looking for something else?

Not the answer you are looking for? Search for more explanations.