if the point(x, sqrt 3/2) is on the unit circle, what is x

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

if the point(x, sqrt 3/2) is on the unit circle, what is x

Trigonometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The point is \[\Large \left(x, \frac{\sqrt{3}}{2}\right)\] right?
yes
Notice how that point is the form (x,y) where \[\Large y = \frac{\sqrt{3}}{2}\] Do you agree with this statement?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes
Now plug this y value into the unit circle equation and solve for x \[\Large x^2+y^2 = 1\] \[\Large x^2+\left( \frac{\sqrt{3}}{2}\right)^2 = 1\] \[\Large x^2+ \frac{\left(\sqrt{3}\right)^2}{2^2} = 1\] \[\Large x^2+ \frac{3}{4} = 1\] Do you see how to solve for x from here?
no
how would you move the 3/4 to the other side? what must you do to both sides?
hint: you need to undo the addition
subtract 3/4 from each side
yes, that gives you \[\Large x^2+ \frac{3}{4} = 1\] \[\Large x^2+ \frac{3}{4}\color{red}{- \frac{3}{4}} = 1\color{red}{- \frac{3}{4}}\] \[\Large x^2 = 1- \frac{3}{4}\] \[\Large x^2 = \frac{4}{4}- \frac{3}{4}\] \[\Large x^2 = \frac{4-3}{4}\] \[\Large x^2 = \frac{1}{4}\]
Now if \[\Large x^2 = \frac{1}{4}\] then what must x be? How would you isolate x?
1/2
x = 1/2 is one solution what is the other?
i don't know
hint: take a number like 10 and square it to get 100. You can also square -10 to get 100 as well since (-10)^2 = (-10)*(-10) = 100 so that's why the solutions to x^2 = 100 are x = -10 or x = 10

Not the answer you are looking for?

Search for more explanations.

Ask your own question