???

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(f(x) = (x+2)^{7x}\) , right?
Yes
so, \(y= (x+2)^{7x}\) ln both sides, what do you get?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

What do you mean?
\(ln\), or log .
I did chain rule and got 7x(x+2)^(6x)
No way!! this is an exponent function with variable on the exponent. You use chain rule if the exponent is a constant. Only one way to take the exponent down is take \(ln\) both sides and use implicit derivative to find dy/dx.
Im not sure how to do that
ok, I do it for you as sample \(ln y = 7x ln(x+2)\) Now take derivative both sides \(\dfrac{y'}{y}= 7ln(x+2) +\dfrac{7x}{x+2}\) multiple y both sides, and replace \(y = (x+2)^{7x}\) , you get the answer
Okay so it would be (7ln(x+2) + 7x/(x+2))(x+2)^7x
  • phi
yes
Thank you!!
  • phi
oops used implicit differentiation another way is to use this factoid (by definition): \[ x= e^{\ln x } \] use that to say \[ (x+2)= e^{\ln(x+2)} \] and \[ (x+2)^{7x}= \left(e^{\ln(x+2)} \right)^{7x} \\y= e^{7x\ln(x+2)} \] now you can take the deriviative
Thank you so much @phi !!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question