egbeach
  • egbeach
Find the limit of the function by using direct substitution. lim(2e^x cos x) x-> pi/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
do you have a problem pluggin in pi/2?
anonymous
  • anonymous
can you two help me
egbeach
  • egbeach
i just have no idea how to solve this problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
\[\lim_{x \rightarrow \frac{\pi}{2}}2e^x \cos(x)= 2 e^{\frac{\pi}{2}} \cos(\frac{\pi}{2})\] by direct substitution we can use direct substitution since the function exists at the thing the x is approaching
anonymous
  • anonymous
im on the problem below
freckles
  • freckles
can you finishing simplifying
egbeach
  • egbeach
thats the part i am having problems with.
freckles
  • freckles
so you aren't sure what cos(pi/2)=?
egbeach
  • egbeach
-1/2
freckles
  • freckles
how do you get that
freckles
  • freckles
you can use the unit circle of the calculator if you want
freckles
  • freckles
cos(pi/2) should be zero either way
egbeach
  • egbeach
oh
freckles
  • freckles
are you good?
freckles
  • freckles
\[\lim_{x \rightarrow \frac{\pi}{2}}2e^x \cos(x)= 2 e^{\frac{\pi}{2}} \cos(\frac{\pi}{2}) \\ =2e^{\frac{\pi}{2}} (0)=?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.