anonymous
  • anonymous
MEDALS AND FAN How do i slove this;
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[2\pi =2pi r \left(\begin{matrix}30 \\360\end{matrix}\right) \]
UsukiDoll
  • UsukiDoll
could you provide a screenshot of this? this just looks weird. O_O
UsukiDoll
  • UsukiDoll
and what are we solving for? for r? for ???

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

aric200
  • aric200
It looks fine to me
anonymous
  • anonymous
What is the radius of a circle in which a 30° arc is 2pi inches long? 24 inches 12 inches 2√3 inches
UsukiDoll
  • UsukiDoll
that's a bit better. looking for the radius of the circle..
anonymous
  • anonymous
yes
anonymous
  • anonymous
a 30 deg arc is 1/12 of a circle (since there are 360 deg in a circle) thus the circumference of this circle is 12x2 pi = 24 pi the circumference of a circle = 2 pi R, so we know that 2 pi R = 24 pi or R=12
anonymous
  • anonymous
i hope i helped :)
UsukiDoll
  • UsukiDoll
oh yeah the circumference formula \[C = 2 \pi r\] \[\frac{C}{2\pi} = r\] a full circle is 360 degrees and we are given 30 degrees as the arc so \[\frac{360}{30} = 12\] so 12 must be r \[C = 2 \pi (12) =24 \pi\] so to check that \[\frac{24 \pi}{2\pi} = r\] \[12=r \] (my explanation is a bit messed up... I haven't done this in years )

Looking for something else?

Not the answer you are looking for? Search for more explanations.