In how many ways can a committee consisting of 2 men and at least 2 women be chosen from 4 men and 3 women?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

In how many ways can a committee consisting of 2 men and at least 2 women be chosen from 4 men and 3 women?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

two men and at least 2 women means a) two men and two women b) two men and three women we can compute each
2 men, 2 women \[\binom{4}{2}\times \binom{3}{2}\]i.e "four choose two times three choose two
2 men, 3 women \[\binom{4}{2}\times \binom{3}{3}\] which is just \(\binom{4}{2}\) since three choose 3 is 1

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you know how to compute these?
no
have you seen "n choose k" sometimes written as \[_nC_k\] or \[\binom{n}{k}\]?
yes
1 Attachment
Could you pls help me to get answers for those questions

Not the answer you are looking for?

Search for more explanations.

Ask your own question