K.Binks
  • K.Binks
What is the foci of a graphed ellipse?
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

K.Binks
  • K.Binks
1 Attachment
anonymous
  • anonymous
Form this ellipse into the general equation. \[\frac{ x^2 }{ a^2 } + \frac{ y^2 }{ b^2 } = 1\]
anonymous
  • anonymous
The ellipse isn't at origin so you need to adjust a little, and use the foci formula \[c^2=a^2-b^2\] c = foci

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

K.Binks
  • K.Binks
Ok, so..is the general equation x^2/-1 + y^2/16= 1?and then use those a and b in the new formula?
anonymous
  • anonymous
The general equation for this ellipse looks like this \[\frac{ (x-2)^2 }{ 3^2 } +\frac{ (y-2)^2 }{ 2^2 } = 1\]
anonymous
  • anonymous
\[c^2=3^2-2^2\]
K.Binks
  • K.Binks
5? That isn't one of my options.. I'm sorry I'm not understanding this. My options are A) (2 - sqrt5 , 1) and (2 + sqrt5 , 1) B) (2 - sqrt5 , 2) and (2 + sqrt5, 2) C) (2, 1) and (-2, 1) D) (-3, 1) and (3, 1)
anonymous
  • anonymous
Its square root 5
anonymous
  • anonymous
you need to get your vertex first
anonymous
  • anonymous
Your best bet is B
K.Binks
  • K.Binks
I didn't mean to be given the answer, but thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.