mathmath333
  • mathmath333
logarithm question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} \normalsize \text{Prove}\ \large \dfrac{3(\log_{10}242+\log_{10}45)+2\log_{10}80-5}{6}=\log_{10}66\hspace{.33em}\\~\\ \end{align}}\)
freckles
  • freckles
this is my thought \[\frac{\log(242^3)+\log(45^3)+\log(80^2)-\log(10^5)}{6} \\ =\frac{1}{6} \log(\frac{242^3 \cdot 45^3 \cdot 80^2}{10^5})\]
freckles
  • freckles
and then you can use power rule bring that 1/6 up and show \[(\frac{242^3 \cdot 45^3 \cdot 80^2}{10^5})^\frac{1}{6} = 66 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
thanks
freckles
  • freckles
\[242=2 \cdot 11^2 \\ 45 =9 \cdot 5=5 \cdot 3^2 \\ 80^2=2^4 \cdot 5 \\ 10=2 \cdot 5\\ \text{ so we have } \\ (\frac{2^3 \cdot 11^6 \cdot 5^3 \cdot 3^6 \cdot 2^{8} 5^2}{2^5 \cdot 5^5})^\frac{1}{6} \\ (2^{3+8-5}\cdot 11^6 \cdot 5^{3+2-5} \cdot 3^6)^\frac{1}{6}\]
freckles
  • freckles
so you don't have to use a calculator I chose prime factorization and law of exponents
freckles
  • freckles
as you will see this will work out nicely :)
mathmath333
  • mathmath333
yea i see the idea of prime factors

Looking for something else?

Not the answer you are looking for? Search for more explanations.