anonymous
  • anonymous
Please help me with this calculus question!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
the first equation is a sphere centered at (0,0,1/2) with radius 1/2. to see this, complete the square on the z variable \[ x^2 + y^2 + z^2 =z \\ x^2 + y^2 + z^2-z +(1/4) = 1/4 \\ x^2+ y^2 + (z-\frac{1}{2})^2 = \frac{1}{4} \] in cylindrical coords, \[ r^2 + \left(z-\frac{1}{2}\right)^2 = \frac{1}{4} \\ r= \sqrt{ \frac{1}{4} -\left(z-\frac{1}{2}\right)^2 } \]
phi
  • phi
the second equation is a cone with its apex at the origin \[ z= \frac{1}{\sqrt{3} }\sqrt{x^2+y^2} \] in cylindrical coords \[ z = \frac{r}{\sqrt{3} } \\ r = \sqrt{3} \ z \]
phi
  • phi
the composite shape is similar to an ice-cream cone: |dw:1438214470899:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
the cone intersects the sphere at a particular z. fix y=0. the second equation gives us \(x = \sqrt{3} z \) plug this (and y=0) in the first equation to get \[ x^2 + y^2 + z^2 =z \\ 3z^2 + z^2 = z\\ 4z^2 - z = 0 \] we find z=0 (i.e the cone's apex intersects the sphere at the origin) and 4z-1=0 or \( z= \frac{1}{4} \) which is what we want.
phi
  • phi
we can now find the volume of the bottom cone, from z=0 to 1/4 in cyl coords the area element is r dr d\(\theta\) and the iterated integral is \[ \int_0^\frac{1}{4} \int_0^{2\pi} \int_0^{\sqrt{3}\ z} r \ dr\ d\theta\ dz \] visually we are doing |dw:1438215237071:dw|
phi
  • phi
above the cone, we integrate volume of the sphere \[ \int_{\frac{1}{4}}^1 \int_0^{2\pi} \int_0^{\sqrt{ \frac{1}{4} -\left(z-\frac{1}{2}\right)^2 }} r \ dr\ d\theta\ dz \] visually |dw:1438215437879:dw|
phi
  • phi
the sum of those two integrals will be 5pi/32

Looking for something else?

Not the answer you are looking for? Search for more explanations.