Is this correct? *

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is this correct? *

Geometry
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Area of each hexagonal shape= 24^2
\[\frac{ 3\sqrt{3} }{ 2 } a^2\]
plug it in and try

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1438258025935:dw| Sorry
the area for a hexafonal shape is \[\left(\begin{matrix}3\sqrt{3} \\ 2\end{matrix}\right) a ^{2}\]
where a is the side
hexagonal
24^2 = Not correct
The area of a hexagon is : \(\dfrac{1}{2}aP\) a = apothem = height of each triangle P = perimeter around the polygon
But that formula applies to all polygons.
|dw:1438258522083:dw|
If you choose the center point as the origin, you will find that all the interior sides of the hexagon are congruent, meaning all the interior angles are 60\(^\circ\)
|dw:1438258924761:dw|
Using the special right triangle rule of 30-60-90 triangles, we can find h. \[\tan(60^\circ) = \frac{h}{2} \longrightarrow h=2\tan(60^\circ)\]
Now that we have found h, we can find the area of the hexagon. \[\sf \text{ # of sides} \cdot A_{\triangle} = \text{area of hexagon} \]
Do you understand? Hope this helps.
Explosive Diarrhea

Not the answer you are looking for?

Search for more explanations.

Ask your own question