-Welp-
  • -Welp-
Is this correct? *
Geometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
-Welp-
  • -Welp-
Area of each hexagonal shape= 24^2
anonymous
  • anonymous
\[\frac{ 3\sqrt{3} }{ 2 } a^2\]
anonymous
  • anonymous
plug it in and try

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

-Welp-
  • -Welp-
|dw:1438258025935:dw| Sorry
anonymous
  • anonymous
the area for a hexafonal shape is \[\left(\begin{matrix}3\sqrt{3} \\ 2\end{matrix}\right) a ^{2}\]
anonymous
  • anonymous
where a is the side
anonymous
  • anonymous
hexagonal
anonymous
  • anonymous
24^2 = Not correct
Jhannybean
  • Jhannybean
The area of a hexagon is : \(\dfrac{1}{2}aP\) a = apothem = height of each triangle P = perimeter around the polygon
Jhannybean
  • Jhannybean
But that formula applies to all polygons.
Jhannybean
  • Jhannybean
|dw:1438258522083:dw|
Jhannybean
  • Jhannybean
If you choose the center point as the origin, you will find that all the interior sides of the hexagon are congruent, meaning all the interior angles are 60\(^\circ\)
Jhannybean
  • Jhannybean
|dw:1438258924761:dw|
Jhannybean
  • Jhannybean
Using the special right triangle rule of 30-60-90 triangles, we can find h. \[\tan(60^\circ) = \frac{h}{2} \longrightarrow h=2\tan(60^\circ)\]
Jhannybean
  • Jhannybean
Now that we have found h, we can find the area of the hexagon. \[\sf \text{ # of sides} \cdot A_{\triangle} = \text{area of hexagon} \]
Jhannybean
  • Jhannybean
Do you understand? Hope this helps.
Jaynator495
  • Jaynator495
Explosive Diarrhea

Looking for something else?

Not the answer you are looking for? Search for more explanations.