anonymous
  • anonymous
The point (2, 3) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
|dw:1438268412570:dw|
anonymous
  • anonymous
So can you explain that? lol
Michele_Laino
  • Michele_Laino
it is the representation of your problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
now, we can write this: \[\Large OP = \sqrt {{2^2} + {3^2}} = ...\]
Michele_Laino
  • Michele_Laino
what is OP?
Michele_Laino
  • Michele_Laino
I have applied the Theorem of Pitagora to the triangle OP1P
anonymous
  • anonymous
the sin tan and cos?
Michele_Laino
  • Michele_Laino
yes, we have to compute OP first
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
hint: \[\Large OP = \sqrt {{2^2} + {3^2}} = \sqrt {4 + 9} = ...?\]
anonymous
  • anonymous
is it just square root of 13
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
so thats the answer
anonymous
  • anonymous
for all three
Michele_Laino
  • Michele_Laino
no, since we have to apply these formulas: \[\Large \begin{gathered} \cos \theta = \frac{{O{P_1}}}{{OP}} = \frac{2}{{\sqrt {13} }} = ... \hfill \\ \hfill \\ \sin \theta = \frac{{P{P_1}}}{{OP}} = \frac{3}{{\sqrt {13} }} = ... \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
finally, by definition, we can write: \[\Large \tan \theta = \frac{{P{P_1}}}{{O{P_1}}} = ...\]
anonymous
  • anonymous
3/2?
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
sweet thanks for the help!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.