Help? Which of the following is an actual zero of f(x) = x3 + x2 - 4x - 4? (4 points) 4 1 -1 -4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help? Which of the following is an actual zero of f(x) = x3 + x2 - 4x - 4? (4 points) 4 1 -1 -4

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

use the remainder theorem if 4 is, then f(4) = 0 if 1 is, then f(1) = 0 if -1 is, then f(-1) =0 and if -4 is instead, then f(-4) =0
@jdoe0001 im so confused. It has -4 in the equation... would it be D?
-4 in the equation means nothing, in relation to a root the remainder theorem only pertains to the constant in the binomial

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so get the f(x) values, see which of the choices give you 0
the one that gives 0, is the root
@jdoe0001 i got 1
so... what's 1 again? or...what's f(1) ?
\(\bf f(x)=x^3+x^2-4x-4 \\ \quad \\ f({\color{brown}{ 1}})=({\color{brown}{ 1}})^3+({\color{brown}{ 1}})^2-4({\color{brown}{ 1}})-4\implies f(1)\ne 0\)
so it wasnt one?
well. what did you get for f(1)? assume that you did it
0
\(\bf f(x)=x^3+x^2-4x-4 \\ \quad \\ f({\color{brown}{ 1}})=({\color{brown}{ 1}})^3+({\color{brown}{ 1}})^2-4({\color{brown}{ 1}})-4\implies f(1)=1+1-4-4 \\ \quad \\ f(1)=2-8\implies f(1)=-6\)
but i guess i wrote it out wrong, you had it a different way

Not the answer you are looking for?

Search for more explanations.

Ask your own question