anonymous
  • anonymous
Let f(x)=1/x and g(x)= x^2-2x. What two numbers are not in the domain of fog?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
Clearly g(x) = x^2-2x has no restrictions, so simply find the restrictions of f(g(x)) = f(x^2-2x) = 1/(x^2-2x)
ganeshie8
  • ganeshie8
\[f(g(x))=\dfrac{1}{x^2-2x}\] what values of \(x\) make that expression go crazy ?
anonymous
  • anonymous
Well, is 0 one of them? @ganeshie8

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
Yes, simply set the bottom equal to 0 and solve x : \[x^2-2x=0\]
anonymous
  • anonymous
@ganeshie8 x= -2? so it would be 0,-4?
anonymous
  • anonymous
-2*
ganeshie8
  • ganeshie8
\(x^2-2x=0 \) \(x(x-2)=0\) \(x=0\) or \(x-2=0\) that gives you \(x~=~0, ~~2\)
ganeshie8
  • ganeshie8
\(0, 2\) are the two numbers that must be excluded from the domain of fog
Astrophysics
  • Astrophysics
Usually when I set it up for the domain I write it as \[x^2-2x \neq 0\] then solve for x, then you know you are looking for the restrictions. That's just a quick tip for rational functions :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.