bia_gonzalex
  • bia_gonzalex
help asap please i need given and prove for each box in order.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bia_gonzalex
  • bia_gonzalex
1 Attachment
bia_gonzalex
  • bia_gonzalex
pleaseee
anonymous
  • anonymous
@ganeshie8

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@dan815
anonymous
  • anonymous
@nincompoop
Michele_Laino
  • Michele_Laino
since AC is a bisector, then we can write: \[\Large \angle DAE \cong \angle BAE\]
Michele_Laino
  • Michele_Laino
\[\Large \angle AED \cong \angle AEB\] since they are right angles
Michele_Laino
  • Michele_Laino
side AE is a common side between triangles AEB and AED so triangles AED and AEB are similar for ASA criterion
Michele_Laino
  • Michele_Laino
sorry triangles AED and AEB are congruent each to other for ASA criterion, not similar finally, since AEB and AED are congruent triangles, then we have: \[\Large AD \cong AB\]
bia_gonzalex
  • bia_gonzalex
im lost :/
Michele_Laino
  • Michele_Laino
reassuming: step #1 since BD is a bisector, then we have: \[\Large \angle ABE \cong \angle ADE\]
Michele_Laino
  • Michele_Laino
step#2 we have: \[\angle AED \cong \angle AEB\] since they are both right angles
Michele_Laino
  • Michele_Laino
then since in a triangle the sum of interiuor angles is 180 degrees step#3 \[\Large \angle DAE \cong \angle BAE\]
Michele_Laino
  • Michele_Laino
interior*
Michele_Laino
  • Michele_Laino
am I right?
bia_gonzalex
  • bia_gonzalex
i have to fill in the blanks with those little answers from the buttom
Michele_Laino
  • Michele_Laino
I know, so you can fill with my step#1 and step#2
bia_gonzalex
  • bia_gonzalex
i am suppose to put 2 answer for each box.
Michele_Laino
  • Michele_Laino
step#4 triangle AEB and AED are congruent each other by ASA criterion, since: AE is a common side, and, as I wrote in step#3 \[\Large \angle DAE \cong \angle BAE\]
Michele_Laino
  • Michele_Laino
I'm pondering...

Looking for something else?

Not the answer you are looking for? Search for more explanations.