Help with calc please? The twice–differentiable function f is defined for all real numbers and satisfies the following conditions: f(0)=3 f′(0)=5 f″(0)=7 1. The function g is given by g(x)=e^ax+f(x) for all real numbers, where a is a constant. Find g ′(0) and g ″(0) in terms of a. 2. The function h is given by h(x)=cos(kx)[f(x)]+sin(x) for all real numbers, where k is a constant. Find h ′(x) and write an equation for the line tangent to the graph of h at x=0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help with calc please? The twice–differentiable function f is defined for all real numbers and satisfies the following conditions: f(0)=3 f′(0)=5 f″(0)=7 1. The function g is given by g(x)=e^ax+f(x) for all real numbers, where a is a constant. Find g ′(0) and g ″(0) in terms of a. 2. The function h is given by h(x)=cos(kx)[f(x)]+sin(x) for all real numbers, where k is a constant. Find h ′(x) and write an equation for the line tangent to the graph of h at x=0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if \( g(x)=e^{ax}+f(x) \) then \(g'(x) = ???\) and \(g''(x) = ???\)
would g'(x)=ae^ax +f'(x)?
I understood the first question and finished it but I still need help with the second one.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I finished the problems, thanks for the clue on the problems!
cool, well done and yes if \(g(x) = e^{ax} + f(x)\) then \(g'(x) = ae^{ax} + f'(x)\) and \(g''(x) = a^2e^{ax} + f''(x)\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question