anonymous
  • anonymous
The lengths of the sides of a triangle are 12, 13, and n. Which of the following must be true? n≥1 n<13 1
Geometry
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Jack_Prism
  • Jack_Prism
b
anonymous
  • anonymous
Awesome! how do you know?
campbell_st
  • campbell_st
the solution has 2 considerations... 1. what if n a shorter side... what conditions must be met 2. what if n is the longest side...what conditions must be met

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
the sum of any 2 sides must be greater than the other side so for example the other side cannot be 1 beacuse 13 = 12 + 1 = 13
welshfella
  • welshfella
- that would be a straight line!
imqwerty
  • imqwerty
the sum of any 2 sides of a triangle is greater than the third side so n+12>13 n>1 13+12>n 25>n so n lies in the range - 1
campbell_st
  • campbell_st
lol... someone always gives the answer
welshfella
  • welshfella
yep!!
imqwerty
  • imqwerty
:)
anonymous
  • anonymous
That actually makes sense thank you! @imqwerty
welshfella
  • welshfella
tdeally we should guide the user to the answer..
imqwerty
  • imqwerty
welcome @mickey1513
anonymous
  • anonymous
and thank you as well @welshfella & @campbell_st
welshfella
  • welshfella
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.