could you also help me with the series (-1)^(n+1)(11^(n-1))/((n+7)^6(10^(n+2)) for ratio test to find L ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

could you also help me with the series (-1)^(n+1)(11^(n-1))/((n+7)^6(10^(n+2)) for ratio test to find L ?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Sorry, don't know what happened, there... it wasn't updating me that you had replied.
So, we can throw away the negative sign since we have absolute values, but it still looks hard to evaluate the limit of the n's since we have powers.
\[\lim_{n \rightarrow \infty} \frac{11(n+7)^6}{10 (n+8)^6}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If we are clever, we will realize though that IF we expanded those sixth powers, the highest power would be a n^6 in both the top and bottom \[\lim_{n \rightarrow \infty} \frac{11 \cdot (n^6 + \cdots)}{10 \cdot (n^6 + \cdots)}\]
The other powers are irrelevant as we take the limit to infinity, leading us to the conclusion that the n^6 powers will approach 1 in the limit. \[\frac{11}{10}\lim_{n \rightarrow \infty} \frac{n^6 + \cdots}{n^6 + \cdots}=\frac{11}{10} \cdot 1 = \frac{11}{10}\]
This means that L > 1, and the series diverges.
great thanks so much!!! your awesome

Not the answer you are looking for?

Search for more explanations.

Ask your own question