anonymous
  • anonymous
Functions f(x) and g(x) are shown below: f(x) g(x) f(x) = -4(x - 6)2 + 3 g(x) = 2 cos(2x - π) + 4 Using complete sentences, explain how to find the maximum value for each function and determine which function has the largest maximum y-value
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

jdoe0001
  • jdoe0001
have you covered function transformations yet? should be in your book
jdoe0001
  • jdoe0001
\(\textit{function transformations} \\ \quad \\ \begin{array}{llll} \begin{array}{llll} shrink\ or\\ expand\\ by\ {\color{purple}{ A}}\end{array} \qquad \begin{array}{llll} vertical\\ shift\\ by \ {\color{green}{ D}} \end{array} \begin{array}{llll}{\color{green}{ D}} > 0& Upwards\\ {\color{green}{ D}} < 0 & Downwards\end{array} \\ % template start \qquad \downarrow\qquad\qquad\quad\ \downarrow\\ y = {\color{purple}{ -4}} ( x - {\color{red}{ 6}} )^2 + {\color{green}{ 3}}\\ %template end \qquad\qquad \quad \uparrow \\ \qquad\begin{array}{llll} horizontal\\ shift\\ by \ {\color{red}{ C}}\end{array} \begin{array}{llll}{\color{red}{ C}} > 0 & to\ the\ left\\ {\color{red}{ C}} < 0& to\ the\ right\end{array} \end{array} \\ \quad \\ -------------------------------------------- \\ \quad \\ \begin{array}{llll} \begin{array}{llll} shrink\ or\\ expand\\ by\ {\color{purple}{ A}}\end{array} \qquad \begin{array}{llll} vertical\\ shift\\ by \ {\color{green}{ D}} \end{array} \begin{array}{llll}{\color{green}{ D}} > 0& Upwards\\ {\color{green}{ D}} < 0 & Downwards\end{array} \\ % template start \qquad \downarrow\qquad\qquad\quad\ \downarrow\\ y = {\color{purple}{ 2}}cos ( {\color{blue}{ 2}} x - {\color{red}{ \pi }} ) + {\color{green}{ 4}}\\ %template end \qquad\qquad \quad \uparrow \\ \qquad\begin{array}{llll} horizontal\\ shift\\ by \ {\color{red}{ C}}\end{array} \begin{array}{llll}{\color{red}{ C}} > 0 & to\ the\ left\\ {\color{red}{ C}} < 0& to\ the\ right\end{array} \end{array}\)
jdoe0001
  • jdoe0001
for the maximum y-value, the only transformation that matters are the vertical shift and in the g(x) case, the "amplitude", or A component

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
well, for g(x) the "A"mplitude and the vertical shift, because the amplitude is a shift as well for trigonometric ones
anonymous
  • anonymous
Try using the second derivative test

Looking for something else?

Not the answer you are looking for? Search for more explanations.