zeesbrat3
  • zeesbrat3
A particle moves along the x-axis with position function s(t) = xe^x. How many times in the interval [−5, 5] is the velocity equal to 0?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zeesbrat3
  • zeesbrat3
@saseal
IrishBoy123
  • IrishBoy123
you mean \(s(t) = te^t\) ??
zeesbrat3
  • zeesbrat3
I suppose, I just copied the question honestly. @IrishBoy123

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
if you do mean: \(\large s(t)=te^t\) then \(\large v(t) = \dot s(t)=\frac{d}{dt}( te^t)\) use product rule and set it to zero to find when the things is at rest
zeesbrat3
  • zeesbrat3
so find the derivative?
Michele_Laino
  • Michele_Laino
yes!
zeesbrat3
  • zeesbrat3
I tried doing what we did but that didn't work, but doing what he just said makes sense. I got 0 as a solution
Michele_Laino
  • Michele_Laino
maybe your function is like this: \[\Large s\left( t \right) = t{e^{ - t}}\]
Michele_Laino
  • Michele_Laino
sorry, if I compute the first derivative, I got this: \[\Large \frac{{d\left( {t{e^t}} \right)}}{{dt}} = \left( {t + 1} \right){e^t}\]
Michele_Laino
  • Michele_Laino
so we have to solve this algebraic equation: \[\Large \left( {t + 1} \right){e^t} = 0\]
zeesbrat3
  • zeesbrat3
I got -1 as a solution
Michele_Laino
  • Michele_Laino
that's right!
zeesbrat3
  • zeesbrat3
Awesome! Thank you for your help!!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.