show that \(\sin(x)+\sin(x-120^{\circ})+\sin(x-240^{\circ})=0\)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

show that \(\sin(x)+\sin(x-120^{\circ})+\sin(x-240^{\circ})=0\)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

my roomate and i are arguing about electric motors and im looking for some geometric explanation for this..
what's true for x=0 is always true no matter how you rotate it
\[e^{i x}(e^{i 2 \pi / 3} +e^{i 2 \pi 2/ 3} +e^{i 2 \pi 3/ 3}) =0\] the real part of that

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

imaginary part I mean, whatever, both are zero haha
it is a three phase system
x + 120 = t sin(t - 120) + sin(t) + sin(t + 120) = 0 sin(t)cos(120) - sin(120)cos(t) + sin(t) + sin(t)cos(120) + sin(120)cos(t) = 0 2 * cos(120) * sin(t) + sin(t) = 0 sin(t) * (2 * cos(120) + 1) = 0 sin(t) * (2 * (-1/2) + 1) = 0 sin(t) * (-1 + 1) = 0 sin(t) * 0 = 0 So, sin(t) can equal pretty much anything t = x + 120 sin(x + 120) can be anything x + 120 can be anything x can be anything There are no wrong solutions for this one.
That's all i got.
Yes he is saying delta/star and some bs which i have no idea about... but it makes sense to think in terms of roots of unity as Empty wa suggesting.. (if im interepreting correctly..)
|dw:1438447767342:dw|
x and y components of vectors are linearly independent in 2D. So in order for vectors to be in equilibrium in 2D their components must be in equilibrium too. That's what I'm saying
complex numbers are just a cute representation of 2d vectors I am so used to just thinking with them I forget other people aren't
|dw:1438448479126:dw|
Confused
welcome to the club @ruhan11

Not the answer you are looking for?

Search for more explanations.

Ask your own question