How would I solve this?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How would I solve this?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
\[\large \frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2} \longrightarrow \frac{(x-(-4))^2}{3^2} -\frac{(y-(-3))^2}{4^2}=1\]
On the left you have the equation of a hyperbola, and the right arrow is what the equation of the hyperbola translates into, which is your function

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

To find the foci and vertices, we need to identify what the center is. center : \((h,k)\)
That's wrong, sorry.
hmm
?...
-4,-3
Good.
Now the foci lie along the horizontal transverse axis, what you know as the major axis. Therefore to find their location, we use the formula \[(h+c),k ~,~ (h-c),k~~, c^2=a^2+b^2 \longrightarrow c=\sqrt{a^2+b^2}\]
c=5
(1, -3,) (-9,-3)
To find the vertices, you use the equation \[{(h+a),k} ~,~ {(h-a),k}\]
(-1, -3) (-7,-3)
?
Yes, c = 5. You are right.
Thank you, could you help me with one more?
Sure, i can try
Thanks :) This is like the opposite I guess.
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question