How do you solve this? Integrate[f'[x]/f[x],{x,a,t}]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How do you solve this? Integrate[f'[x]/f[x],{x,a,t}]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{a}^{t} \frac{f'(x)}{f(x)} dx\]
Maybe we try to define a function g[x] such that \[g'[x] = f'(x) f(x)^{-1}\]
then I can g[t] -g[a]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

by fundamental theorem
so then I guess I'm asking.. how would I convert \[f'(x) f(x)^{-1}\] into g(x) ? Is there a rule or method for it? I thought maybe reverse chain rule.. but I'm not seeing how it would apply.
oh, irish's post hasnt come through yet. I'll refresh...
he had one and now it is gone
\(\large g(x) = \frac{d}{dx}(ln(f(x)) = \frac{1}{f(x)} \ f'(x)\) \(G(x) = \int \ g(x) \ dx = \int \ \frac{d}{dx}(ln(f(x)) \ dx\ = ln(f(x))\)
Did we use the ln function with reverse chain rule here? ok.. I think I get it..
Thnx irish

Not the answer you are looking for?

Search for more explanations.

Ask your own question