welshfella
  • welshfella
Integrate cot x csc^2x dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
welshfella
  • welshfella
I'm trying the substitution u = cot x and using the identity csc^2 x = 1 + cot^2 x
welshfella
  • welshfella
hold on its cot^x = 1 + csc^2 x right?
anonymous
  • anonymous
\[\int\limits_{}^{}\cot x \csc ^2x dx=\int\limits_{}^{}\frac{ cosx }{ \sin^3x }dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
and how would you proceed from there?
amistre64
  • amistre64
if u = cot(x) what is du?
anonymous
  • anonymous
u sub\[u=\sin x\]\[du=\cos x dx\]\[dx=\frac{ 1 }{ \cos x }\]
welshfella
  • welshfella
du/dx ln sin x
welshfella
  • welshfella
thats where i got stuck
amistre64
  • amistre64
i recall D[tan(x)] = sec^2(x) D[cot(x)] = -csc^2(x)
anonymous
  • anonymous
\[\int\limits_{}^{}\frac{ \cos x }{ u^3 }\frac{ 1 }{ \cos x }du\]
amistre64
  • amistre64
\[\int cot(x)~csc^2(x)~dx\implies -\int u~du\]
anonymous
  • anonymous
ya wanna take over am?
welshfella
  • welshfella
ah - i was using ln sin x instead of -csc^2 x i can see it now
amistre64
  • amistre64
take over? nah, just a perspective :)
anonymous
  • anonymous
heh i have my own problems to solve too actually, not working too well
amistre64
  • amistre64
welsh is a smart fella :)
anonymous
  • anonymous
but i cant put it here cause it doesnt belong to maths
welshfella
  • welshfella
yes I see it now thanks for your help
welshfella
  • welshfella
I looked up the integral instead of the derivative!!!! that wasn't so smart!!!
welshfella
  • welshfella
lol
anonymous
  • anonymous
lol that happens alot
welshfella
  • welshfella
ty both
anonymous
  • anonymous
engineering department seems dead

Looking for something else?

Not the answer you are looking for? Search for more explanations.