What is the axis of symmetry of the graph of y = -3(x + 8)2 + 5? a. x = -3 b. x = 5 c. x = 8 d. x = -8

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the axis of symmetry of the graph of y = -3(x + 8)2 + 5? a. x = -3 b. x = 5 c. x = 8 d. x = -8

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[y=-3(x+8)^2+5\] The axis of symmetry is that line that divides a function into two symmetric parts, but in this case, it is a parabola. I know it's a parabola because there is a variable that is squared in the function, in this case being \((x+3)^2\). But, a parabola has it's symmetry axis superposed to that line composed by all the mid-points of the points defined by the parabola. In other words, you can find the symmetry axis by finding the roots, or "zeroes" of the equation and then calculating the mid-point between them. So, we will take in consideration when \(y=0\) , so therefore: \[-3(x+8)^2+5=0\] So, I'll leave to you the solving for "x" part.
the vertex form is \[y = a(x -h)^2 + k\] the vertex is (h, k) where h is the line of symmetry and k is the minimum or maximum value of the curve
None of that helped me to solve it...but thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the vertex form \[y = a(x - h)^2 + k\] your question y = -3(x + 8)^2 + 5 match them up h = -8, k = 5 so the vertex is at (-8, 5) the x value in the vertex is the equation of the line of symmetry

Not the answer you are looking for?

Search for more explanations.

Ask your own question