zmudz
  • zmudz
Show that for any two positive real numbers \(a\) and \(b\), \(\frac{a+b}{2} - \sqrt{ab} \geq \sqrt{\frac{a^2+b^2}{2}} - \frac{a+b}{2}.\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
.
Sepeario
  • Sepeario
holy mother of god
Sepeario
  • Sepeario
have you tried searching this on google?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
.
Zarkon
  • Zarkon
I can prove it using the fact that \[\left(\frac{a^2+b^2}{2}-ab\right)^2\ge0\] it is not the most elegant proof. If I find something elegant then I might post it.
Loser66
  • Loser66
@oldrin.bataku
anonymous
  • anonymous
consider $$\frac{a+b}2-\sqrt{ab}\ge\sqrt{\frac{a^2+b^2}2}-\frac{a+b}2\\a+b\ge\sqrt{\frac{a^2+b^2}2}+\sqrt{\frac{2ab}2}\\(a+b)^2\ge \frac{a^2+b^2}2+\frac{2ab}2+\sqrt{a^3b+ab^3}=\frac12 (a+b)^2+\sqrt{ab(a^2+b^2)}\\(a+b)^2\ge2\sqrt{ab(a^2+b^2)}\\(a+b)^4\ge 4a^3b+4ab^3\\a^4+b^4+4a^3b+4ab^3+6a^2b^2\ge 4a^3b+4ab^3\\a^4+b^4+6a^2b^2\ge0$$ which is trivially true since \(a^2,b^2,a^4,b^4\ge 0\)
anonymous
  • anonymous
the steps are all reversible so that proves it
Loser66
  • Loser66
I don't get line 3 from line 2 \( a+b\ge\sqrt{\frac{a^2+b^2}2}+\sqrt{\frac{2ab}2}\) square both sides, line 3 should be \((a+b)^2\ge \frac{a^2+b^2}2+\frac{2ab}2+\sqrt{2a^3b+2ab^3}=\frac12 (a+b)^2+\sqrt{2ab(a^2+b^2)}\)
Loser66
  • Loser66
\((a+b)^2\geq(\sqrt{\dfrac{a^2+b^2}{2}})^2+(\sqrt{\dfrac{2ab}{2}})^2+2\sqrt{\dfrac{a^2+b^2}{2}}*\sqrt{\dfrac{2ab}{2}}\) \((a+b)^2\geq\dfrac{a^2+b^2}{2}+\dfrac{2ab}{2}+\cancel{2}\sqrt{\dfrac{a^2+b^2}{\cancel{4}}*2ab}\)
Loser66
  • Loser66
Hence the result is \((a+b)^4\geq 4(2ab(a^2+b^2))\\(a+b)^4\geq 8a^3b+8ab^3\)
Loser66
  • Loser66
\(a^4+b^4 +4a^3b +4ab^3+6a^2b^2\geq 8a^3b+8ab^3\\a^4+b^4+6a^2b^2\geq 4a^3b-4ab^3\) then???
Loser66
  • Loser66
oh, I got it, it becomes \((a-b)^4\geq 0\) and go back ward. Thank you so much.
anonymous
  • anonymous
good catch @Loser66 but as you showed it's salvageable
Loser66
  • Loser66
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.