anonymous
  • anonymous
Help !!!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[4 \tan \theta = 3 find : \frac{ 4 \sin \theta - \cos \theta }{ { 4 \sin \theta + \cos \theta } }\]
arindameducationusc
  • arindameducationusc
E|dw:1438595156291:dw|
arindameducationusc
  • arindameducationusc
|dw:1438595205018:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

arindameducationusc
  • arindameducationusc
so, putting the value of tan theta let theta=x sec(^2)x=1+tan(^2)x =1+(3/4)^2 secx=5/4 so cos x=4/5
arindameducationusc
  • arindameducationusc
now find sin x by 1-cos^x and put cos and sin the your equation. If you have any doubt ask me okay? @Greaty
anonymous
  • anonymous
._. ok suu this was on me test so i will help ya
anonymous
  • anonymous
First of all:\[\tan=\frac{ \sin \theta }{ \cos \theta}\]
anonymous
  • anonymous
1=\[\sin \theta+\cos \theta\]
anonymous
  • anonymous
base your equation off this information
anonymous
  • anonymous
@arindameducationusc \[\tan \theta\] never equaled \[\frac{ 3 }{ 4 }\]
Michele_Laino
  • Michele_Laino
hint: If we divide both numerator and denominator by cos(\theta), we get: \[\Large \frac{{4\sin \theta - \cos \theta }}{{4\sin \theta + \cos \theta }} = \frac{{\frac{{4\sin \theta - \cos \theta }}{{\cos \theta }}}}{{\frac{{4\sin \theta + \cos \theta }}{{\cos \theta }}}} = \frac{{4\tan \theta - 1}}{{4\tan \theta + 1}}\]
Michele_Laino
  • Michele_Laino
therefore, after a substitution, we can write this: \[\Large \begin{gathered} \frac{{4\sin \theta - \cos \theta }}{{4\sin \theta + \cos \theta }} = \frac{{\frac{{4\sin \theta - \cos \theta }}{{\cos \theta }}}}{{\frac{{4\sin \theta + \cos \theta }}{{\cos \theta }}}} = \frac{{4\tan \theta - 1}}{{4\tan \theta + 1}} = \hfill \\ \hfill \\ = \frac{{\left( {4 \times \frac{3}{4}} \right) - 1}}{{\left( {4 \times \frac{3}{4}} \right) + 1}} = ...? \hfill \\ \end{gathered} \]
arindameducationusc
  • arindameducationusc
@Icedragon Are you okay???
IrishBoy123
  • IrishBoy123
OR|dw:1438603742502:dw| and just do it in your head :-)
anonymous
  • anonymous
thanks all :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.