anonymous
  • anonymous
Jackie is analyzing a quadratic function f(x) and a linear function g(x). Will they intersect?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://assets.openstudy.com/updates/attachments/535d89a0e4b05d7c6ff882eb-adriank-1398639034398-untitled.png
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
a quadratic function f(x), can be this: \[f\left( x \right) = a{x^2} + bx + c\] whereas a linear function, g(x), can be this: \[g\left( x \right) = kx + h\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
now, the intersections between those functions, are given by the solutions of the subsequent algebraic system: \[\left\{ \begin{gathered} f\left( x \right) = a{x^2} + bx + c \hfill \\ g\left( x \right) = kx + h \hfill \\ \end{gathered} \right.\]
Michele_Laino
  • Michele_Laino
so, we can have the subsequent cases: 1) two distinct solutions, which means, taht we have two distinct point of intersections: |dw:1438611731045:dw|
anonymous
  • anonymous
Ohhh! :) Ok, I'm understanding it now
Michele_Laino
  • Michele_Laino
2) one solutions, or more precisely two identical solutions, which means that we have only one intersection: |dw:1438611820605:dw|
anonymous
  • anonymous
I have to go but I'll be back in 10 minutes(eating breakfast)!
Michele_Laino
  • Michele_Laino
3) no solutions, which means that we have no intersections: |dw:1438611883205:dw|
anonymous
  • anonymous
so is it no intersection?
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
yes! in the third case we have no intersections
anonymous
  • anonymous
yay!:)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.