mathmath333
  • mathmath333
Set Theory.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align}& \normalsize \text{Let }\ A,B\ \text{and }C\ \text{be three sets. } \hspace{.33em}\\~\\ & \normalsize \text{If}\ A\in B\ \text{and}\ B\subset C,\hspace{.33em}\\~\\ & \normalsize \text{Is it true that }\ A\subset C\ ?\hspace{.33em}\\~\\ \end{align}}\)
Loser66
  • Loser66
Sure
mathmath333
  • mathmath333
I have to show it with example

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
every element of A is also an element of B, and every element of B is also an element of C, so every element of A is an element of C
Loser66
  • Loser66
|dw:1438616813096:dw|
mathmath333
  • mathmath333
Wait my book says it it false
Michele_Laino
  • Michele_Laino
also this example works well: |dw:1438616949711:dw|
mathmath333
  • mathmath333
wait let me show my book proof
Loser66
  • Loser66
wwwwwwwwwwwat?? hahaha,.... then I failed!!
mathmath333
  • mathmath333
1 Attachment
mathmath333
  • mathmath333
|dw:1438617127714:dw|
Loser66
  • Loser66
Yes!! it is perfect. I am sorry for my careless!! \(\in \neq \subset\)
freckles
  • freckles
A that little e thing B means A is an element of B and no a set can't be a element of another set it can be a subset of another set
Michele_Laino
  • Michele_Laino
the same of @Loser66, I'm very sorry @mathmath333
Loser66
  • Loser66
hihihi.,.... no worry, everybody has mistake.

Looking for something else?

Not the answer you are looking for? Search for more explanations.