Set theory

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What? I dont compute
Put \(\subset\) or \(\cancel {\subset}\) in the \(\cdots\) 1.) {x:x is a circle in the plane} . . .{x : x is a circle in the same plane with radius 1 unit} 2.) {x : x is a triangle in a plane} . . . {x : x is a rectangle in the plane} 3.) {x : x is an equilateral triangle in a plane} . . . {x : x is a triangle in the same plane} 4.) {x : x is an even natural number} . . . {x : x is an integer}
for 4.) i think answer is \(\subset\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes i agree
natural number is a subset of integer
example \(\{1\}\subset \{1,2\}\)
ok what abt the top 3
yea - its been a long time.
I think 1 is not a subset
ok
- i thin the reverse is the case
and set of triangles are not a subset of a set of rectangles - right ???
yea ok
as for 3 i think its a subset
no 3.)
a set equilateral triangles would belong to a set of triangles
ok thnx

Not the answer you are looking for?

Search for more explanations.

Ask your own question