i'll medal and fan for some trig help :)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

i'll medal and fan for some trig help :)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Whatcha need help with? :)
hi! @johnweldon1993 I'm reviewing for my final for my summer course but misplaced my notes on internal and external angles and have a couple questions about it
No problem...ask away ^_^

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so im trying to find the sum of interior angles of a decagon, and if im remembering correctly, the formula is (n-2)180 n being the number of sides
Correct :) And since we know that a decagon has 10 sides, we just replace 'n' with 10 and evaluate
soooo (10-2)180 --> (8)180=1440?
Correct indeed :)
ok, i have a couple more questions is that ok? :)
of course :)
ok so if each exterior angle is 12 degrees, how many sides does the polygon have? I forget this formula :(
Well we can remember the formula in the sense that ALL polygons have exterior angles that add to 360 So in order to find out how many sides we can use the fact that \[\large \frac{360}{\text{number of sides}} = \text{length of each side}\]
Did that make sense? :)
Sorry, should have said "measure of each exterior angle" as opposed to "length of each side" kinda confusing context there...sorry about that

Not the answer you are looking for?

Search for more explanations.

Ask your own question