anonymous
  • anonymous
Identify the definite integral that computes the volume of the solid generated by revolving the region bounded by the graph of y = x^3 and the line y = x, between x = 0 and x = 1, about the y axis. Please show steps. Thanks
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
here is the drawing of your question? |dw:1438789614976:dw|
Michele_Laino
  • Michele_Laino
so your integral is given by the subsequent expression: \[\Large \int_0^1 {dy} \pi {\left( {\sqrt[3]{y} - y} \right)^2}\]
Michele_Laino
  • Michele_Laino
so we have the subsequent steps: \[\Large \begin{gathered} \int_0^1 {dy} \pi {\left( {\sqrt[3]{y} - y} \right)^2} = \pi \int_0^1 {dy} \left( {{y^{2/3}} + {y^2} - {y^{4/3}}} \right) = \hfill \\ \hfill \\ = \pi \left. {\left( {\frac{3}{5}{y^{5/3}} + \frac{{{y^3}}}{3} - \frac{3}{7}{y^{7/3}}} \right)} \right|_0^1 = \hfill \\ \hfill \\ = \pi \left( {\frac{3}{5} + \frac{1}{3} - \frac{3}{7}} \right) = \frac{{8\pi }}{{105}} \hfill \\ \end{gathered} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Astrophysics
  • Astrophysics
|dw:1438789876309:dw| \[V = \int\limits_{a}^{b} A(x) dx\] Where the Area is \[A = \pi r^2 \implies A= \pi(\sqrt[3]{y}-y)^2\]\[\int\limits_{0}^{1} \pi (\sqrt[3]{y}-y)^2 dy\] this is called the disk method :-)
Michele_Laino
  • Michele_Laino
oops.. I have made a typo: here are the right steps: \[\Large \begin{gathered} \int_0^1 {dy} \pi {\left( {\sqrt[3]{y} - y} \right)^2} = \pi \int_0^1 {dy} \left( {{y^{2/3}} + {y^2} - 2{y^{4/3}}} \right) = \hfill \\ \hfill \\ = \pi \left. {\left( {\frac{3}{5}{y^{5/3}} + \frac{{{y^3}}}{3} - \frac{6}{7}{y^{7/3}}} \right)} \right|_0^1 = \hfill \\ \hfill \\ = \pi \left( {\frac{3}{5} + \frac{1}{3} - \frac{6}{7}} \right) = \frac{{8\pi }}{{105}} \hfill \\ \end{gathered} \]
IrishBoy123
  • IrishBoy123
|dw:1438792815058:dw| \(dV \approx \pi [ \ (x+dx)^2 - x^2] [ \ x - x^3]\) \( = \pi [ \ x^2+2xdx +dx^2 - x^2] [ \ x - x^3]\) \( \approx \pi \ 2x dx (x - x^3) = 2 \pi (x^2 - x^4) \ dx\) [\(dx^2 \rightarrow 0\)] \(\therefore \large V = 2 \pi \ \int_{0}^{1} x^2 - x^4 \ dx = 2 \pi (\frac{1}{3} - \frac{1}{5}) = \frac{4 \pi}{15}\)
IrishBoy123
  • IrishBoy123
the other way |dw:1438793806147:dw| \(dV \approx [ \ \pi (\sqrt[3]{y})^2 - \pi y^2 \ ] dy\) \(\large V = \pi \int_{0}^{1} \ \ y^{2/3} - y^2 dy \\ = \pi [ \frac{3}{5} y^{5/3} - \frac{1}{3}y^3]_{0}^{1} \\ = \pi [ \frac{3}{5} - \frac{1}{3} ]= \frac{4 \pi}{15}\)
Astrophysics
  • Astrophysics
Ahhh Michele and I made the same mistake haha, thanks @IrishBoy123
Michele_Laino
  • Michele_Laino
I'm very sorry @Yaros. Thanks @IrishBoy123 for your reply
Astrophysics
  • Astrophysics
I sort of forgot that \[A = \pi ((\text{outer~r}^2-\text{inner r}^2))\] around those lines
Michele_Laino
  • Michele_Laino
yes! that's right! @Astrophysics

Looking for something else?

Not the answer you are looking for? Search for more explanations.