anonymous
  • anonymous
PLEASE HELP!!!! using the following system of inequalities find the maximum value of f(x,y)=3x+8y x≥0 y≥0 3x+2y≤18 6x+7y≤42
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
you need to solve last two equations for y or just use desmos calculator shade the region
anonymous
  • anonymous
y≤-3/2x+9 y≤-6/7x+6
anonymous
  • anonymous
$$x\le 0\\y\le 0\\y\le -\frac32 x+9\\y\le -\frac67 x+6$$ |dw:1438790372303:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the intersection is at $$-\frac32 x+9=-\frac67 x+6\\-21x+14\cdot9=-12x+14\cdot 6\\14\cdot 3=9x\\\frac{14}3=x$$
anonymous
  • anonymous
so now we have the following points to test: $$x=0,\qquad y=0\\x=0,\qquad y=6\\x=0,\qquad y=9\\x=14/3,\ \ y=2\\x=6,\qquad y=0\\x=7,\qquad y=0$$
anonymous
  • anonymous
oops, ot the \(x=0,y=9\) and \(x=7,y=0\), only the four points that bound the quadrilateral
anonymous
  • anonymous
plug these into your objective function and test them: $$f(0,0)=0\\f(0,6)=48\\f\left(\frac{14}3,2\right)=30\\f(6,0)=18$$
anonymous
  • anonymous
|dw:1438790959035:dw|
anonymous
  • anonymous
so the biggest value happened at \((14/3,2)\) with value \(30\), so \(30\) is our maximum value
anonymous
  • anonymous
thank you so much !!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.