What is a binomial theorem?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is a binomial theorem?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form a xb yc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, (x+y)^4 \;=\; x^4 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\, y^4.
Oh... those are big numbers...
yeah ....did it help you

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not really, that is exactly how my workbook explains it, and I didn't get that either.
I could never remember the formula for the Binomial Theorem, so instead, I just learned how it worked. I noticed that the powers on each term in the expansion always added up to whatever n was, and that the terms counted up from zero to n. Returning to our intial example of (3x – 2)10, the powers on every term of the expansion will add up to 10, and the powers on the terms will increment by counting up from zero to 10: (3x – 2)10 = 10C0 (3x)10–0(–2)0 + 10C1 (3x)10–1(–2)1 + 10C2 (3x)10–2(–2)2 + 10C3 (3x)10–3(–2)3 + 10C4 (3x)10–4(–2)4 + 10C5 (3x)10–5(–2)5 + 10C6 (3x)10–6(–2)6 + 10C7 (3x)10–7(–2)7 + 10C8 (3x)10–8(–2)8 + 10C9 (3x)10–9(–2)9 + 10C10 (3x)10–10(–2)10
a formula for finding any power of a binomial without multiplying at length. this might help: khan academy is my favorite https://www.khanacademy.org/math/algebra2/polynomial_and_rational/binomial_theorem/v/binomial-theorem
Thanks.
sure. good luck!

Not the answer you are looking for?

Search for more explanations.

Ask your own question