Permutation: how many four letter word can you make out of SUMMER?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Permutation: how many four letter word can you make out of SUMMER?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

numbers of permutations of n elements are: \[\Large n!\]
would it be 5! * 2?
we have to count how many subset of four elements I can make with 6 elements

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

How would I do that?
more precisely, we have to count how many subsets of four elements, we can make with 6 elements, being those subset different by the order of their elements or by the type of elements. In general, if we want to get howm many k elements subsets we can form with n elements, we have to apply this formula: \[\large {D_{n,k}} = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot ... \cdot \left( {n - k + 1} \right)\] Now, in your case k=4 and n=6
\[\Large {D_{n,k}}\] isa called the numbers of simple dispositions
so is it 5 P 4 + 6 * 4 P 2?
if we apply my formula above, we get: \[\Large \begin{gathered} {D_{n,k}} = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot ... \cdot \left( {n - k + 1} \right) = \hfill \\ = 6 \cdot 5 \cdot 4 \cdot 3 = ...? \hfill \\ \end{gathered} \]
\[\large \begin{gathered} {D_{n,k}} = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot ... \cdot \left( {n - k + 1} \right) = \hfill \\ = 6 \cdot 5 \cdot 4 \cdot 3 = ...? \hfill \\ \end{gathered} \]
sorry for my first post, I have misunderstood your question!
Ahah no worries :) tyyy

Not the answer you are looking for?

Search for more explanations.

Ask your own question